资源类型

期刊论文 1206

会议视频 29

年份

2023 83

2022 140

2021 116

2020 90

2019 62

2018 49

2017 48

2016 56

2015 61

2014 63

2013 52

2012 72

2011 49

2010 61

2009 47

2008 39

2007 36

2006 18

2005 11

2004 10

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 8

环境 8

泥水盾构 7

农业科学 5

反渗透 5

水环境 4

砂卵石地层 4

超滤 4

三峡工程 3

京津冀 3

优化 3

农业节水 3

半旱地农业 3

绿色化工 3

Preissmann格式 2

中国西北地区 2

二氧化碳 2

展开 ︾

检索范围:

排序: 展示方式:

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 198-204 doi: 10.1007/s11709-007-0023-1

摘要: The intensive soil-water interaction in unsaturated expansive soil is one of the major reasons for slope failures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrated that the soil-water interaction induced by seasonal wetting-drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deformation and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

关键词: strength     intensive soil-water     comprehensive     Infiltration     wetting-induced softening    

Application of fractal theory to unsaturated soil mechanics

XU Yongfu, TONG Lixin

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 411-421 doi: 10.1007/s11709-007-0056-5

摘要: The mechanical properties of unsaturated soils are a function of the saturation degree or matric suction, and can be obtained based on currently available procedures. However, each procedure has its limitations and consequently, care should be taken in the selection of a proper procedure. The fractal approach seems to be a potentially useful tool to describe hierarchical systems and is suitable to model the structure and hydraulic properties of unsaturated soils. In this paper, the soil-water characteristics, unsaturated hydraulic conductivity function, unsaturated shear strength, swelling deformation and compression were derived from the fractal model for the pore-size distribution, and were expressed by only two independent physical parameters, the fractal dimension and the air entry value. The predictions of the proposed soil-water characteristics, unsaturated hydraulic conductivity, unsaturated shear strength, swelling deformation and compression were in good agreement with published experimental data. Comparisons between the experimental results of unsaturated hydraulic conductivity and the predictions of the both fractal model and the van Genuchten-Mualem model were also performed, and it was found that the predictions of the fractal model were better than that of the van Genuchten-Mualem model.

关键词: selection     soil-water     independent physical     unsaturated     strength    

Functional trait differences between native bunchgrasses and the invasive grass

Huiqin HE, Thomas A. MONACO, Thomas A. JONES

《农业科学与工程前沿(英文)》 2018年 第5卷 第1期   页码 139-147 doi: 10.15302/J-FASE-2017175

摘要: We conducted 30- and 60-d greenhouse experiments to compare functional traits of (invasive annual grass) and four perennial bunchgrasses under well-watered or drought conditions. Even under drought, experienced significantly less stress (i.e., higher xylem pressure potential and greater shoot water content, water use per day and water-use efficiency) and biomass production than the perennial grasses after 30 d. However, after 60 d, its superiority was reduced under infrequent watering. Differences among perennial grasses were more pronounced for physiological traits under infrequent watering and for morphological traits under frequent watering. (fast-growing species) had a higher transpiration rate, lower leaf temperature, and lower water-use efficiency than the other grasses after 30 d. In contrast, (slow-growing) had lower xylem pressure potential and higher leaf temperature than all other grasses under infrequent watering. Under frequent watering, shoot dry mass and specific leaf area of was matched by (moderate-growing species). Our results indicate that multiple-species plantings or seedings are necessary to foster greater weed resistance against . We also emphasize that when choosing plant material for restoration, performance during both pulse (resource-rich) and inter-pulse (resource-poor) periods should be considered.

关键词: annual grass     comparative growth     drought response     invasive plant     native grass     specific leaf area     soil-water use    

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE

《农业科学与工程前沿(英文)》 2022年 第9卷 第3期   页码 333-343 doi: 10.15302/J-FASE-2022450

摘要:

● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE.

关键词: nitrogen     microbiome     NUE     rhizosphere     phyllosphere     soil food web    

The use of fine portions from construction and demolition waste for expansive soil stabilization: A review

Mgboawaji Claude UJILE; Samuel Jonah ABBEY

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 803-816 doi: 10.1007/s11709-022-0835-z

摘要: Construction and demolition waste (CDW) are the largest waste products in the world today and competes as a viable recycled additive material in place of natural aggregates. Due to the increase in compressive strength of different mix proportions of CDW, it is also considered for reuse in concrete and subbase construction. This study shows the effect of CDW in expansive soil stabilization. The chemical and mechanical properties of these materials have shown that they are capable of developing compressive strength properties for replacement of cement with significant reduction in carbon emission. The inherent compositional properties of recycled CDW compared in this review suggests that CDW have good filler properties in highly expansive soils. Mixtures of crushed brick and recycled aggregates characterised based on chemical properties of different replacement ratios suggests that CDW of good-quality aggregates reduces swell potential of expansive soils and increased mechanical strength in pavement construction.

关键词: mixed fine portions     construction and demolition waste     expansive soil     soil stabilization    

Numerical evaluation of group-pile foundation subjected to cyclic horizontal load

Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG,

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 196-207 doi: 10.1007/s11709-010-0021-6

摘要: In this paper, three-dimensional (3D) finite element analyses of a real-scale group-pile foundation subjected to horizontal cyclic loading are conducted using a program named DBLEAVES. In the simulations, nonlinear behaviors of ground and piles are described by subloading model and the axial-force dependent model (AFD model) which considered the axial-force dependency in the nonlinear moment-curvature relations. In order to consider the influence of an effective stress path on the prediction of the group-pile foundation, the analyses are conducted within the framework of the soil-water coupling method with finite-difference and finite-element regime. The material parameters of soils are determined based on conventional triaxial drained compression tests on undisturbed and remolded specimens. The applicability of the proposed numerical method is encouraging, and therefore, it is quite confident to say that the method can be used to predict the mechanical behaviors of group-pile foundation to a satisfactory accuracy, particularly with the effective stress analysis.

关键词: group-pile foundation     real-scale cyclic loading test     three-dimensional finite element method (3D-FEM)     soil-water coupling analysis     undisturbed and remolded specimens    

Simulation of soil carbon changes due to land use change in urban areas in China

Cui HAO, Jo SMITH, Jiahua ZHANG, Weiqing MENG, Hongyuan LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 255-266 doi: 10.1007/s11783-013-0485-4

摘要: Land use change can have a strong impact on soil carbon dynamics and carbon stocks in urban areas. Due to rapid urbanization, large areas of land have been paved, and other areas have undergone rapid land use change. Evaluation of the impact of urbanization on carbon dynamics and carbon stock (30 cm) has become an issue of urgent concern. The soil carbon dynamics, due to rapid land use change in Tianjin Binhai New Area of China, have been simulated in this paper using the RothC model. Because this area is saline, a modified version of RothC that includes a salt rate modifier provided more accurate simulations than the original model. The conversion to urban green land was not accurately simulated by either of the models because of the undefined changes in soil and plant conditions. According to the model, changes of arable to grassland resulted in a decline in soil carbon stocks, and changes of grassland to forest and grassland to arable resulted in increased soil carbon stocks in this area. Across the whole area simulated, the total carbon stocks in 2010 had decreased due to land use change by 6.5% from the 1979 value. By 2050, a further decrease of 21.9% is expected according to the 2050 plan for land use and the continuing losses from the soils due to previous land use changes.

关键词: land use change     soil carbon     RothC     urban area    

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soilprocesses: how can we maintain and predict soil properties and functions?

Rainer HORN, Winfried E. H. BLUM

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 243-245 doi: 10.15302/J-FASE-2020334

WATER USE IN HUMAN CIVILIZATIONS: AN INTERDISCIPLINARY ANALYSIS OF A PERPETUAL SOCIAL-ECOLOGICAL CHALLENGE

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 512-524 doi: 10.15302/J-FASE -2021393

摘要:

Settlement patterns and social structures have been shaped by access to water since the onset of human societies. This review covers historical and recent examples from Cambodia, Central Asia, India, Latin America and the Arabian Peninsula to analyze the role of water resources in determining the rise and collapse of civilizations. Over recent decades increasing globalization and concomitant possibilities to externalize water needs as virtual water have obscured global dependence on water resources via telecoupling, but rapid urbanization brings it now back to the political agenda. It is foremost in the urban arena of poorer countries where competing claims for water increasingly lead to scale-transcendent conflicts about ecosystem services. Solutions to the dilemma will require broad stakeholder-based agreements on water use taking into account the available data on water resources, their current and potential use efficiency, recycling of water after effective treatment, and social-ecological approaches of improved governance and conflict resolution.

 

关键词: agroecology     historical water use     water footprint     water governance     urbanization    

STRATEGIES FOR IMPROVING WATER USE EFFICIENCY IN DRYLAND AGROECOSYSTEMS

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 599-602 doi: 10.15302/J-FASE -2021409

The effect of different agricultural management practices on irrigation efficiency, water use efficiencyand green and blue water footprint

La ZHUO, Arjen Y. HOEKSTRA

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 185-194 doi: 10.15302/J-FASE-2017149

摘要: This paper explores the effect of varying agricultural management practices on different water efficiency indicators: irrigation efficiency (IE), crop water use efficiency (WUE), and green and blue water footprint (WF). We take winter wheat in an experimental field in Northern China as a case study and consider a dry, average and wet year. We conducted 24 modeling experiments with the AquaCrop model, for all possible combinations of four irrigation techniques, two irrigation strategies and three mulching methods. Results show that deficit irrigation most effectively improved blue water use, by increasing IE (by 5%) and reducing blue WF (by 38%), however with an average 9% yield reduction. Organic or synthetic mulching practices improved WUE (by 4% and 10%, respectively) and reduced blue WF (by 8% and 17%, respectively), with the same yield level. Drip and subsurface drip irrigation improved IE and WUE, but drip irrigation had a relatively large blue WF. Improvements in one water efficiency indicator may cause a decline in another. In particular, WUE can be improved by more irrigation at the cost of the blue WF. Furthermore, increasing IE, for instance by installing drip irrigation, does not necessarily reduce the blue WF.

关键词: field management     irrigation efficiency     water footprint     water productivity     water use efficiency    

Effects of dwarfing genes on water use efficiency of bread wheat

Jiakun YAN, Suiqi ZHANG

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 126-134 doi: 10.15302/J-FASE-2017134

摘要: Climate change has increased the risk of drought, which significantly limits plant productivity. Various ways of increasing water availability and sustaining growth of crop plants in drought-prone environments are available. Genetic advances in grain yields under rainfed conditions have been achieved with the introduction of dwarfing genes. A thorough understanding of the effects of different dwarfing genes on root growth, coleoptile length, grain yields and water using efficiency (WUE) will provide opportunities to select appropriate genes for breeding high WUE and grain yield cultivars. This review focuses on the mechanism involved in genes that reduce plant height and affect root and coleoptile length, their consequent effects on grain yields and WUE, and suggests that for rainfed and irrigation-limited environments, combining GAR and GAI dwarfing genes in breeding may help boost WUE and yields, and more materials from different parental sources should be collected to assess opportunities for potential comprehensive application of specific genes.

关键词: coleoptile length     wheat     dwarfing genes     grain yield     root     water use efficiency    

Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges

Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1254-9

摘要: • CWF is a sustainable POU water treatment method for developing areas. • CWF manufacturing process is critical for its filtration performance. • Simultaneous increase of flow rate and pathogen removal is a challenge. • Control of pore size distribution holds promises to improve CWF efficiency. • Novel coatings of CWFs are a promising method to improve contaminant removal. Drinking water source contamination poses a great threat to human health in developing countries. Point-of-use (POU) water treatment techniques, which improve drinking water quality at the household level, offer an affordable and convenient way to obtain safe drinking water and thus can reduce the outbreaks of waterborne diseases. Ceramic water filters (CWFs), fabricated from locally sourced materials and manufactured by local labor, are one of the most socially acceptable POU water treatment technologies because of their effectiveness, low-cost and ease of use. This review concisely summarizes the critical factors that influence the performance of CWFs, including (1) CWF manufacturing process (raw material selection, firing process, silver impregnation), and (2) source water quality. Then, an in-depth discussion is presented with emphasis on key research efforts to address two major challenges of conventional CWFs, including (1) simultaneous increase of filter flow rate and bacterial removal efficiency, and (2) removal of various concerning pollutants, such as viruses and metal(loid)s. To promote the application of CWFs, future research directions can focus on: (1) investigation of pore size distribution and pore structure to achieve higher flow rates and effective pathogen removal by elucidating pathogen transport in porous ceramic and adjusting manufacture parameters; and (2) exploration of new surface modification approaches with enhanced interaction between a variety of contaminants and ceramic surfaces.

关键词: Point-of-use water treatment     Ceramic water filter     Bacterial removal     Surface modification     Water quality    

WATER USE IN HUMAN CIVILIZATIONS: AN INTERDISCIPLINARY ANALYSIS OF A PERPETUAL SOCIAL-ECOLOGICAL CHALLENGE

Andreas BUERKERT, Kotiganahalli Narayanagowda GANESHAIAH, Stefan SIEBERT

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 512-524 doi: 10.15302/J-FASE-2021393

摘要: Since the onset of human societies, settlement patterns and social structures have been shaped by access to water. This review covers historical and recent examples from Cambodia, Central Asia, India, Latin America and the Arabian Peninsula to analyze the role of water resources in determining the rise and collapse of civilizations. Over recent decades increasing globalization and concomitant possibilities to externalize water needs as have obscured global dependence on water resources via telecoupling, but rapid urbanization brings it now back to the political agenda. It is foremost in the urban arena of poorer countries where competing claims for water increasingly lead to scale-transcendent conflicts about ecosystem services. Solutions to the dilemma will require broad stakeholder-based agreements on water use taking into account the available data on water resources, their current and potential use efficiency, recycling of water after effective treatment, and social-ecological approaches of improved governance and conflict resolution.

关键词: agroecology     historical water use     water footprint     water governance     urbanization    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

标题 作者 时间 类型 操作

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

期刊论文

Application of fractal theory to unsaturated soil mechanics

XU Yongfu, TONG Lixin

期刊论文

Functional trait differences between native bunchgrasses and the invasive grass

Huiqin HE, Thomas A. MONACO, Thomas A. JONES

期刊论文

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE

期刊论文

The use of fine portions from construction and demolition waste for expansive soil stabilization: A review

Mgboawaji Claude UJILE; Samuel Jonah ABBEY

期刊论文

Numerical evaluation of group-pile foundation subjected to cyclic horizontal load

Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG,

期刊论文

Simulation of soil carbon changes due to land use change in urban areas in China

Cui HAO, Jo SMITH, Jiahua ZHANG, Weiqing MENG, Hongyuan LI

期刊论文

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soilprocesses: how can we maintain and predict soil properties and functions?

Rainer HORN, Winfried E. H. BLUM

期刊论文

WATER USE IN HUMAN CIVILIZATIONS: AN INTERDISCIPLINARY ANALYSIS OF A PERPETUAL SOCIAL-ECOLOGICAL CHALLENGE

期刊论文

STRATEGIES FOR IMPROVING WATER USE EFFICIENCY IN DRYLAND AGROECOSYSTEMS

期刊论文

The effect of different agricultural management practices on irrigation efficiency, water use efficiencyand green and blue water footprint

La ZHUO, Arjen Y. HOEKSTRA

期刊论文

Effects of dwarfing genes on water use efficiency of bread wheat

Jiakun YAN, Suiqi ZHANG

期刊论文

Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges

Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang

期刊论文

WATER USE IN HUMAN CIVILIZATIONS: AN INTERDISCIPLINARY ANALYSIS OF A PERPETUAL SOCIAL-ECOLOGICAL CHALLENGE

Andreas BUERKERT, Kotiganahalli Narayanagowda GANESHAIAH, Stefan SIEBERT

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文